Synonyms for bmprii or Related words with bmprii

bmpria              bmprib              tgfrii              actria              bmpri              trii              actriia              fzd              prokineticin              plexin              tweakr              bmpr              neuropilin              flrg              actrii              actriib              aactivin              tgfbrii              betaglycan              riib              netrin              bmpriia              actrib              pilr              angiopoetin              nherf              rgmb              norrin              trkc              ngr              alks              pilra              neuropilins              tgfri              ephb              sortilin              sost              igcam              hrxr              riia              igfir              tpor              intergrin              igfii              exodomain              osmr              cntfr              ectodomains              nrtn              tccr             



Examples of "bmprii"
The signaling complex for bone morphogenetic proteins (BMP) start with a ligand binding with a high affinty type I receptor (ALK1-7) followed by the recruitment of a type II receptor(ActRIIA, ActRIIB, BMPRII). The first receptor kinase domain is then trans-phosphorylated by the apposed, activating type II receptor kinase domain. GDF2 binds ALK1 and ActRIIB with the highest affinity in the BMPs, it also binds, with a lower affinity ALK2, also known has Activin A receptor, type I (ACVR1), and the other type II receptors BMPRII and ActRIIA. GDF2 and BMP10 are the only ligands from the TGF-β superfamily that can bind to both type I and II receptors with equally high affinity. This non-discriminative formation of the signaling complex open the possibility of a new mechanism. In cell type with low expression level of ActRIIB, GDF2 might still signal due to its affinity to ALK1, then form complex with type II receptors.
GDF9 acts through two receptors on the cells surrounding the oocyte, it binds to bone morphogenic protein receptor 2 (BMPRII) and downstream to this utilizes the TGF-ß receptor type 1 (ALK5). Ligand receptor activation allows the downstream phosphorylation and activation of SMAD proteins. SMAD proteins are transcription factors found in vertebrates, insects and nematodes, and are the intercellular substrates of all TGF-ß molecules. Huang, Q., Cheung, A., Zhang, Y., Huang, H., Auersperg, N. and Leung, P. (2009). Effects of growth differentiation factor 9 on cell cycle regulators and ERK42/44 in human granulosa cell proliferation. AJP: Endocrinology and Metabolism, 296(6), pp.E1344-E1353 GDF9 specifically activates SMAD2 and SMAD3 which form a complex with SMAD4, a common partner of all SMAD proteins, that is then able to translocate to the nucleus to regulate gene expression.
Bone morphogenic protein 15 (BMP15) is highly expressed in the oocyte and the surrounding follicular cells contributing greatly to folliculogenesis and oogenesis. Like GDF9, BMP15 belongs to the TGF-ß superfamily. Differences in the synergistic action of BMP15 and GDF9 appear to be species dependent. BMP15 and GDF9 act in an additive manner to increase mitotic proliferation in sheep granulosa cells, although the same effect is not observed in bovine granulosa cells. The silencing of ‘’Bmp15’’ in mice results in partial fertility but normal histological appearance of the ovary. Although, when this is combined with the silencing of one allele of ‘’Gdf9’’, mice are completely infertile due to insufficient folliculogenesis and altered cumulus cell morphology. Mice with this genome also fail to release oocytes resulting in trapped oocytes in the corpus lutea. This phenotype is absent in ‘’Gdf9’’ silenced mice and only present a small population of ‘’Bmp15’’ silenced mice. This reveals the synergistic relationship of GDF9 and BMP15 whereby the silencing of both genes results in more severe outcome then either of the genes alone. It is thought that any co operative effects of GDF9 and BMP15 are modulated through the BMPRII receptor.