Synonyms for ectodomains or Related words with ectodomains

ectodomain              neuropilins              plexin              trii              endodomain              homotrimeric              sctcr              tnfrs              pilr              exodomain              tgfrii              fzd              heterodimerisation              nectin              transmenbrane              ngr              betaglycan              ngrs              granulins              fniii              fgfrs              ifnar              endodomains              syndecans              netrin              prodomains              syndecan              heterodimeric              heteropentamer              klotho              emilin              sirp              ltbp              neuroligins              prodomain              glypicans              rhamm              homopentamer              dystroglycan              dkks              protomers              heterocomplex              gpvi              crig              nucleolin              attractin              frizzleds              lamr              synaptotagmins              proteinthat             



Examples of "ectodomains"
3’s ectodomain. The ectodomains show the least amount of amino acid sequence conservation, not more than 10–20%; in contrast, the transmembrane and cytoplasmic domains share approximately 60–70% amino acid sequence identity.
Sheddases are membrane-bound enzymes that cleave extracellular portions of transmembrane proteins, releasing the soluble ectodomains from the cell surface. Many sheddases are members of the ADAM or aspartic protease (BACE) protein families.
Dscam1 encodes an immunoglobulin (Ig) superfamily member which, in Drosophila, can generate up to 19,008 proteins with distinct ectodomains. In binding assays, Dscams show isoform-specific homophilic interactions, but little interaction occurs between different, yet closely related, isoforms.
An ectodomain is the domain of a membrane protein that extends into the extracellular space (the space outside a cell). Ectodomains are usually the parts of proteins that initiate contact with surfaces, which leads to signal transduction. In SARS-CoV the ectodomain of the spike protein is responsible for attachment to and entry into cells during infection.
Combined, these results support a simple model for a direct role for Dscam in self-recognition in which identical Dscam ectodomains on the surfaces of isoneuronal dendrites recognize each other and induce a subsequent repulsive signal that is mediated by domains in the cytoplasmic tail (Figure 7).
Members of the ADAM family are cell surface proteins with a unique structure possessing both potential adhesion and protease domains. Sheddase, a generic name for the ADAM metallopeptidase, functions primarily to cleave membrane proteins at the cellular surface. Once cleaved, the sheddases release soluble ectodomains with an altered location and function.
The TCR/peptide-MHC complex, formed when a T-cell recognizes its ligand and the T-cell-APC contact occurs, spans a short length. As the authors propose, this forms small zones of close contact, from which the inhibitory CD45 phosphatase molecules with ectodomains too large to fit in are excluded.
More recent studies demonstrated that mice use a different family of cell recognition molecules: clustered Protocadherins (Pcdhs), in a fly Dscam1-like strategy to regulate self-avoidance. Although both clustered Pcdhs and Dscam1 genes generate families of proteins with diverse ectodomains joined to a common cytoplasmic domain, the mode of generating clustered Pcdhs and fly Dscam1 counterpart diversity is markedly different. Pcdhs diversity is largely generated by alternative promoter choice, as opposed to alternative splicing.
Related alpha-secretases, including ADAM10, have also been implicated in similar maturation events for other transmembrane proteins such as MHC class I proteins. Recent evidence suggests that some such proteins are first processed to ectodomains by alpha secretases and subsequently cleaved by another Alzheimer's-associated protease complex, gamma secretase in its presenilin-complexed form. The Notch pathway bears many similarities to APP processing and is also regulated in part by ADAM10.
IL-17RA is the founding member of a new IL-17R(A-E) subfamily of cytokine receptors. IL-17RA is by far the largest member of the family and has the largest cytoplasmic tail of the family. This cytoplasmic tail provides docking sites for numerous signaling intermediates. IL-17RA is composed of both alpha helices and beta sheets and has fibronectin domains, beta-sandwich domains, and ectodomains.
The antigen recognition region is usually an scFv, although many alternatives exist. An antigen recognition domain from native T-cell receptor (TCR) alpha and beta single chains have been described, as have simple ectodomains (e.g. CD4 ectodomain to recognize HIV infected cells) and more exotic recognition components such as a linked cytokine (which leads to recognition of cells bearing the cytokine receptor). Almost anything that binds a given target with high affinity can be used as an antigen recognition.
To test whether sister branch segregation requires neighboring mushroom body axons to express different sets of Dscam isoforms, Hattori et al. (2009) reduced the entire repertoire of Dscam ectodomains to just a single isoform using homologous recombination and examined mushroom body morphology in "Dscam" and control animals. In the majority of the mushroom bodies analyzed, one of the two lobes was completely absent and in the few remaining samples, one lobe was significantly thinner than the other. This dominant phenotype indicates that the defects do not result from the loss of any one isoform, but rather the presence of the same isoform on all axons.
Functions of syndecan can be categorized in four ways. First is growth-factor-receptor activation. Glycosaminoglycans attached to the syndecan help binding of the various growth factors for activation of important cellular signaling mechanisms. Growth factors such as FGF2, HGF, EGF, VEGF, neuregulins and others interact with syndecans [1, 2, 8]. For example, at the site of tissue injury, the soluble syndecan-1 ectodomains are cleaved by heparanases, producing heparin-like fragments that activate bFGF [13]. Whereas most growth factors interact with syndecans via heparan sulfate chains, the prosecretory mitogen lacritin requires heparanase to both expose and create a binding site in the N-terminus of syndecan 1.
Human NKG2D receptor complex assembles into a hexameric structure. NKG2D itself forms a homodimer whose ectodomains serve for ligand binding. Each NKG2D monomer is associated with DAP10 dimer. This association is maintained by ionic interaction of a positively charged arginine present in a transmembrane segment of NKG2D and negatively charged aspartic acids within both transmembrane regions of DAP10 dimer. DAP10 functions as an adaptor protein and transduces the signal after the ligand binding by recruiting the p85 subunit of PI3K and Grb2-Vav1 complex which are responsible for subsequent downstream events.
It has become clear in the past years that ectodomain shedding is an initial step for the activation of specific receptors such as Notch, ErbB-4 and the angiopoietin receptor Tie-1. Notch-1 signaling is essential for endothelial differentiation, and tumor angiogenesis, while the angiopoietin receptor Tie-1 facilitates embryonic blood vessel formation. Upon binding of their ligands, Notch-1 and Tie-1 undergo proteolytic cleavage of the ectodomains by ADAM17 and ADAM10. This cleavage frees the cytoplasmic fragment for cellular signaling, in the case of Notch-1, it transfers to the nucleus.
The herpesvirus glycoprotein B is a type-1 transmembrane protein with a signal sequence at its N terminus. The crystal structure of herpes simplex virus (HSV) type-1 and Epstein-Barr virus glycoprotein B ectodomains were solved as a trimer, revealing five structural domains (I-V). Domain I contains two internal fusion loops, thought to insert into the cellular membrane during virus-cell fusion. In HSV, domain II is hypothesized to interact with another herpesvirus glycoprotein, gH/gL, during the fusion process. Domain III consists of a structurally important elongated alpha helix, while domain IV is hypothesized to interact with cellular receptors. Finally, domain V acts in conjunction with domain I during protein-lipid interactions. In HSV, neutralizing monoclonal antibodies map to structural domains I, II, IV and V. Due to its unique structure, herpesvirus glycoprotein B (along with vesicular stomatitis virus glycoprotein G and baculovirus gp64) belongs to a new class of viral membrane fusion glycoproteins, class III.
The DENV E (envelope) protein, found as a dimer on the surface of the mature viral particle, is important in the initial attachment of this particle to the host cell. Each E protein monomer comprises three ectodomains, ED1 to ED3, and a trans-membrane segment. ED2 includes the dimerization interface, two glycosylation sites, and the peptide of fusion with the cellular membrane. ED3 is a continuous polypeptide segment; its fold is compact and immunoglobulin-like. Dengue virus is transmitted by a mosquito known as "Aedes". Several molecules which interact with the viral E protein (ICAM3-grabbing non-integrin, CD209, Rab 5, GRP 78, and the mannose receptor ) have been shown to be important factors mediating attachment and viral entry. The membrane form of Ribosomal protein SA may also be involved in the attachment. Recombinant domains of the E protein are used as well-defined antigens in the serological detection of antibodies directed against dengue virus and as immunogens in vaccine candidates.
"Drosophila melanogaster" has only innate immune responses. Response to fungal or bacterial infection occurs through two distinct signalling cascades, one of which is toll pathway and the other is immune deficiency (IMD) pathway. The toll pathway is similar to mammalian TLR signalling, but unlike mammalian TLRs, toll is not activated directly by pathogen-associated molecular patterns (PAMPs). Its receptor ectodomain recognizes cleaved form of the cytokine Spätzle, which is secreted in the haemolymph as inactive dimeric precursor. Toll receptor shares the cytoplasmatic TIR domain with mammalian TLRs, but ectodomain and intracytoplasmatic tail are different. This difference might reflect a function of these receptors as cytokine receptors rather than PRRs. Toll pathway is activated by different stimuli, such as Gram positive bacteria, fungi and virulence factors. First, the Spätzle processing enzyme (SPE) is activated in response to infection and cleaves Spätzle. Cleaved Spätzle then binds to toll receptor and crosslinks its ectodomains. This triggers conformational changes in receptor resulting in signalling through toll. Signalling now is very similar to mammalian signalling through TLRs. Toll-induced signalling complex (TICS) is formed, comprising MyD88, Tube and Pelle (the orthologue of mammalian IRAK). Signal from TICS is then transduced to Cactus (homologue of mammalian IκB), phosphorylated Cactus is polyubiquitylated and degraded, allowing nuclear translocation of DIF (dorsal-related immunity facor; a homologue of mammalian NF-κB) and induction of transcription of genes for antimicrobial peptides (AMPs) such as Drosomycin.