Synonyms for hjv or Related words with hjv

hemojuvelin              sost              norrin              flrg              manf              ptrf              metrn              pgrn              rgma              frzb              hevin              gdnfr              nrtn              folliculin              metrnl              progranulin              idua              sortilin              rmga              retinoschisin              sgef              kalirin              cdnf              frabin              hhip              mepe              sarcospan              chimerin              probdnf              lacritin              prongf              optineurin              klotho              neublastin              nrgn              sirp              vldlr              pdgfd              calpastatin              tweakr              saspase              neurobeachin              prlr              mbnl              srage              polydom              trii              pirb              phosphatonin              mafb             



Examples of "hjv"
Mouse HJV knock-out models confirmed that HJV is the gene responsible for juvenile hemochromatosis. Hepcidin levels in the liver are dramatically depressed in these knockout animals.
RGMc/HJV, is transcriptionally regulated during muscle differentiation.
Using a combination of biochemical and cell-based approaches, it has demonstrated that BMP-2 could interact in biochemical assays with the single-chain HJV species, and also could bind to cell-associated HJV. Two mouse HJV amino acid substitution mutants, D165E and G313V (corresponding to human D172E and G320V), also could bind BMP-2, but less effectively than wild-type HJV, while G92V (human G99V) could not. In contrast, the membrane-spanning protein, neogenin, a receptor for the related molecule, RGMa, preferentially bound membrane-associated heterodimeric RGMc and was able to interact on cells only with wild-type RGMc and G92V. These results show that different isoforms of RGMc/HJV may play unique physiological roles through defined interactions with distinct signaling proteins and demonstrate that, in some disease-linked HJV mutants, these interactions are defective.
A soluble form of HJV may be a molecule that suppresses hepcidin expression.
Two classes of GPI-anchored and glycosylated HJV molecules are targeted to the membrane and undergo distinct fates.
Furin-like proprotein convertases (PPC) are responsible for conversion of 50 kDa HJV to a 40 kDa protein with a truncated COOH-terminus, at a conserved polybasic RNRR site. This suggests a potential mechanism to generate the soluble forms of HJV/hemojuvelin (s-hemojuvelin) found in the blood of rodents and humans.
Mutations in HJV are responsible for the vast majority of juvenile hemochromatosis patients. A small number of patients have mutations in the hepcidin (HAMP) gene. The gene was positionally cloned. Hemojuvelin is highly expressed in skeletal muscle and heart, and to a lesser extent in the liver. One insight into the pathogenesis of juvenile hemochromatosis is that patients have low to undetectable urinary hepcidin levels, suggesting that hemojuvelin is a positive regulator of hepcidin, the central iron regulatory hormone. As a result, low hepcidin levels would result in increased intestinal iron absorption. Thus, HJV/RGMc appears to play a critical role in iron metabolism.
The Danish Home Guard () (HJV) is the fourth service of the Danish military. It was formerly concerned only with the defence of Danish territory but, since 2008, it has also supported Danish international military efforts in Afghanistan, Iraq and Kosovo. There are five branches: Army Home Guard, Naval Home Guard, Air Force Home Guard, Police Home Guard, and Infrastructure Home Guard.
The Danish Home Guard () (HJV) is the fourth service of the Danish military, it was formerly concerned only with the defence of Danish territory, but since 2008, it has also supported the Danish military efforts in Afghanistan and Kosovo. Service is voluntary and unpaid, though members' loss of income from time taken off work, transport expenses and other basic expenses are compensated. However, workshop and depot staff plus clerks and senior officers are all paid. The unarmed Women's Army Corps ("Lottekorpset") was merged in 1989 with the then all-male Home Guard to form the present, armed unisex Home Guard.
A number of other miR-122 targets, including CD320, AldoA and BCKDK, have been identified by microarray analysis of changes in mRNA expression in the liver of mice treated with miR-122 inhibitors. The overall effect of miR-122 inhibition is to reduce the plasma cholesterol level, although the pathways involved in this regulation have not been fully elucidated. miR-122 also regulates systemic iron homeostasis via the target mRNAs Hjv and Hfe. miR-122 inhibition in mice or primates does not result in any detectable liver toxicity.
Hemojuvelin (HJV), also known as repulsive guidance molecule C (RGMc) or hemochromatosis type 2 protein (HFE2), is a membrane-bound and soluble protein in mammals that is responsible for the iron overload condition known as juvenile hemochromatosis in humans, a severe form of hemochromatosis. In humans, the hemojuvelin protein is encoded by the "HFE2" gene. Hemojuvelin is a member of the repulsive guidance molecule family of proteins. Both RGMa and RGMb are found in the nervous system, while hemojuvelin is found in skeletal muscle and the liver.
The protein encoded by this gene is an enzyme which belongs to the subtilisin-like proprotein convertase family. The members of this family are proprotein convertases that process latent precursor proteins into their biologically active products. This encoded protein is a calcium-dependent serine endoprotease that can efficiently cleave precursor proteins at their paired basic amino acid processing sites. Some of its substrates are: proparathyroid hormone, transforming growth factor beta 1 precursor, proalbumin, pro-beta-secretase, membrane type-1 matrix metalloproteinase, beta subunit of pro-nerve growth factor and von Willebrand factor. A furin-like pro-protein convertase has been implicated in the processing of RGMc (also called hemojuvelin), a gene involved in a severe iron-overload disorder called juvenile hemochromatosis. Both the Ganz and Rotwein groups demonstrated that furin-like proprotein convertases (PPC) are responsible for conversion of 50 kDa HJV to a 40 kDa protein with a truncated COOH-terminus, at a conserved polybasic RNRR site. This suggests a potential mechanism to generate the soluble forms of HJV/hemojuvelin (s-hemojuvelin) found in the blood of rodents and humans.
One of the most well-known PPCs is Furin. Furin is a serine endoprotease which cleaves protein precursors carboxyterminal of basic residues in motifs such as Arg–X–X–Arg and Lys/Arg–Arg. Cleavage usually results in activation of the proprotein but can also inactivate or modify the activity. Therefore, it is not surprising that it plays a major role in many physiological processes and pathologies, including cancer. Some of its substrates are: proparathyroid hormone, transforming growth factor beta 1 precursor, proalbumin, pro-beta-secretase, membrane type-1 matrix metalloproteinase, beta subunit of pro-nerve growth factor and von Willebrand factor. A furin-like pro-protein convertase has been implicated in the processing of RGMc (also called hemojuvelin hemojuvelin). Both the Ganz and Rotwein groups demonstrated that furin-like proprotein convertases (PPC) are responsible for conversion of 50 kDa HJV to a 40 kDa protein with a truncated COOH-terminus, at a conserved polybasic RNRR site. This suggests a potential mechanism to generate the soluble forms of HJV/hemojuvelin (s-hemojuvelin) found in the blood of rodents and humans.
RGMc/HJV is a 4-exon gene in mammals that undergoes alternative RNA splicing to yield 3 mRNAs with different 5’ untranslated regions (5’UTRs). Gene transcription is induced during myoblast differentiation, producing all 3 mRNAs. There are three critical promoter elements responsible for transcriptional activation in skeletal muscle (the tissue that has the highest level of RGMc expressesion per weight), comprising paired E-boxes, a putative Stat and/or Ets element, and a MEF2 site, and muscle transcription factors myogenin and MEF2C stimulate RGMc promoter function in non-muscle cells. As these elements are conserved in RGMc genes from multiple species, these results suggest that RGMc has been a muscle-enriched gene throughout its evolutionary history.
Hepcidin is the master regulator of iron metabolism and, therefore, most genetic forms of iron overload can be thought of as relative hepcidin deficiency in one way or another. For instance, a severe form of iron overload, juvenile hemochromatosis, is a result of severe hepcidin deficiency. The majority of cases are caused by mutations in the hemojuvelin gene (HJV or RGMc/repulsive guidance molecule c). The exceptions, people who have mutations in the gene for ferroportin, prove the rule: these people have plenty of hepcidin, but their cells lack the proper response to it. So, in people with ferroportin proteins that transport iron out of cells without responding to hepcidin's signals to stop, they have a deficiency in the action of hepcidin, if not in hepcidin itself.
Chronic iron toxicity is usually the result of more chronic iron overload syndromes associated with genetic diseases, repeated transfusions or other causes. In such cases the iron stores of an adult may reach 50 grams (10 times normal total body iron) or more. Classic examples of genetic iron overload includes hereditary hemochromatosis (HH) and the more severe disease juvenile hemochromatosis (JH) caused by mutations in either the gene RGMc gene, a member of a three gene repulsive guidance molecule family, (also called hemojuvelin (HJV), and HFE2), Hemojuvelin, or the HAMP gene that encodes (an iron regulatory peptide). The exact mechanisms of most of the various forms of adult hemochromatosis, which make up most of the genetic iron overload disorders, remain unsolved. So while researchers have been able to identify genetic mutations causing several adult variants of hemochromatosis, they now must turn their attention to the normal function of these mutated genes.