Synonyms for monoethyl or Related words with monoethyl

monobutyl              monomethyl              monopropyl              monoisopropyl              diethyleneglycol              propylenegylcol              monoethylether              monomethylether              monohexyl              dipropylene              propyleneglycol              diisopropyl              octoxyglyceryl              diethyl              monoisobutyl              dibutyl              bisdiethylene              lycobetaine              dipropyleneglycol              cannabigerovarin              carbitol              monoisoheptyl              glycolmethyl              glycolmonoethyl              diethylene              dipelargonate              monoalkyl              monomethy              dicaprilic              mesaconates              teraconate              horminon              dicapryl              dicaproate              monododecyl              octylvinyl              monobutylether              menthyl              glycoltripropylene              cbgm              bistributylene              methylether              diisopentyl              dibuthyl              disopropyl              maleate              etherqs              monobuthyl              etheyl              monoisopropylether             



Examples of "monoethyl"
The main compartment of the titration cell contains the anode solution plus the analyte. The anode solution consists of an alcohol (ROH), a base (B), SO and I. A typical alcohol that may be used is methanol or diethylene glycol monoethyl ether, and a common base is imidazole.
Alkylations on weakly acidic methylene groups (e.g. in the case of carboxylic esters or nitriles) proceed with high yield and selectivity. For example, by the reaction of 8-phenylmenthylphenylacetate with iodoethane in the presence of P-"t"-Bu only the monoethyl derivative in the "Z" configuration is obtained in 95% yield.
A double-blind placebo-controlled study found glutathione to be effective as a skin whitening agent and in reducing dark spots; the dose regime was 500 mg per day (split in 2 equal doses per day) for 2 – 4 weeks. In contrast, a study that examined the effect of glutathione and related compounds in-vitro found that glutathione monoethyl ester but not glutathione had a depigmenting effect. A review of the use of glutathione for skin whitening was published in 2016.
Glycol ethers are a group of solvents based on alkyl ethers of ethylene glycol or propylene glycol commonly used in paints and cleaners. These solvents typically have a higher boiling point, together with the favorable solvent properties of lower-molecular weight ethers and alcohols. The word "Cellosolve" was registered in 1924 as a United States trademark by Carbide & Carbon Chemicals Corp. (later named Union Carbide Corp.) for "Solvents for Gums, Resins, Cellulose Esters, and the Like",; the first one was ethyl cellosolve (ethylene glycol monoethyl ether), with the name now generic for glycol ethers.
An analysis of the endocrine disrupting chemicals in Old Order Mennonite women in mid-pregnancy determined that they have much lower levels in their systems than the general population. Mennonites eat mostly fresh, unprocessed foods, farm without pesticides, and use few or no cosmetics or personal care products. One woman who had reported using hairspray and perfume had high levels of monoethyl phthalate, while the other women all had levels below detection. Three women who reported being in a car or truck within 48 hours of providing a urine sample had higher levels of diethylhexyl phthalate which is found in polyvinyl chloride, and is used in car interiors.
Biodegradation of DEP in soil occurs by sequential hydrolysis of the two diethyl chains of the phthalate to produce monoethyl phthalate, followed by phthalic acid. This reaction occurs very slowly in an abiotic environment. Thus there exists an alternative pathway of biodegradation which includes transesterification or demethylation by microorganisms, if the soil is also contaminated with methanol, that would produce another three intermediate compounds, ethyl methyl phthalate, dimethyl phthalate and monomethyl phthalate. This biodegradation has been observed in several soil bacteria. Some bacteria with these abilities have specific enzymes involved in the degradation of phthalic acid esters such as phthalate oxygenase, phthalate dioxygenase, phthalate dehydrogenase and phthalate decarboxylase.
Values obtained for specific surface area depend on the method of measurement. In adsorption based methods, the size of the adsorbate molecule (the probe molecule), the exposed crystallographic planes at the surface and measurement temperature all affect the obtained specific surface area. For this reason, in addition to the most commonly used Brunauer-Emmett-Teller (N2-BET) adsorption method, several techniques have been developed to measure the specific surface area of particulate materials at ambient temperatures and at controllable scales, including methylene blue (MB) staining, ethylene glycol monoethyl ether (EGME) adsorption, electrokinetic analysis of complex-ion adsorption and a Protein Retention (PR) method.
The most important use of phosphorous acid (phosphonic acid) is the production of phosphites (phosphonates) which are used in water treatment. Phosphorous acid is also used for preparing phosphite salts, such as potassium phosphite. These salts, as well as aqueous solutions of pure phosphorous acid, are fungicides. Phosphites have shown effectiveness in controlling a variety of plant diseases, in particular, treatment using either trunk injection or foliar containing phosphorous acid salts is indicated in response to infections by "phytophthora" and "pythium"-type plant pathogens (both within class "oomycetes", known as water molds), such as dieback/root rot and downy mildew. Anti-microbial products containing salts of phosphorous acid are marketed in Australia as 'Yates Anti-Rot'; and in the United States of America, for example, aluminum salts of the monoethyl ester of phosphorous acid (known generically as 'Fosetyl-Al') are sold under the trade name 'Aliette'. Phosphorous acid and its salts, unlike phosphoric acid, are somewhat toxic and should be handled carefully.
Most acetate esters, however, are produced from acetaldehyde using the Tishchenko reaction. In addition, ether acetates are used as solvents for nitrocellulose, acrylic lacquers, varnish removers, and wood stains. First, glycol monoethers are produced from ethylene oxide or propylene oxide with alcohol, which are then esterified with acetic acid. The three major products are ethylene glycol monoethyl ether acetate (EEA), ethylene glycol monobutyl ether acetate (EBA), and propylene glycol monomethyl ether acetate (PMA, more commonly known as PGMEA in semiconductor manufacturing processes, where it is used as a resist solvent). This application consumes about 15% to 20% of worldwide acetic acid. Ether acetates, for example EEA, have been shown to be harmful to human reproduction.
Poly(acrylonitrile) is generally made via emulsion or solution polymerization. The commercial product can be stabilized by the addition of 50 ppm hydroquinone monoethyl ether. The polymerization of MeAN is carried out in tetrahydrofuran (THF) with the disodium salt of polyethylene oxide (PEO). MeAN is also commercially produced by the vapor-phase reaction of isobutylene with ammonia and oxygen in the presence of a catalyst. Acetonitrile, hydrogen cyanide and acrolein are known by-products. It is used in the preparation of homo- and copolymers, elastomers, coatings and plastics. It can be used as a replacement for acrylonitrile in similar reactions. MeAN can also be synthesized by dehydration of methacrylamide or from isopropylene oxide and ammonia.
Approximately 50% of synthetic catechol is consumed in the production of pesticides, the remainder being used as a precursor to fine chemicals such as perfumes and pharmaceuticals. It is a common building block in organic synthesis. Several industrially significant flavors and fragrances are prepared starting from catechol. Guaiacol is prepared by methylation of catechol and is then converted to vanillin on a scale of about 10M kg per year (1990). The related monoethyl ether of catechol, guethol, is converted to ethylvanillin, a component of chocolate confectioneries. 3-"Trans"-Isocamphylcyclohexanol, widely used as a replacement for sandalwood oil, is prepared from catechol via guaiacol and camphor. Piperonal, a flowery scent, is prepared from the methylene diether of catechol followed by condensation with glyoxal and decarboxylation.
Diethyl phthalate is hydrolyzed to monoester, monoethyl phthalate and ethanol after oral administration in the lumen of the gastrointestinal tract or in the intestinal mucosal cells. Hydrolysis of DEP also takes place at the kidney and liver after systemic absorption. After tissue distribution throughout the body, DEP accumulates in the liver and kidney. The metabolites are excreted in the urine. DEP is metabolized by carboxyl esterase, which is synthesized in the human liver. In vitro studies show that DEP reduces the glucuronyl transferase activity. It was also observed that the activity of peroxisomal enzyme carnitine acetyl transferase is increased in cultures of rat liver cells. Furthermore DEP induces the enzyme activity of catalase, which leads to hepatic peroxisome proliferation and possibly causes hyperplasia.
Originally, it was planned to use a 2,000 lbf (9 kN) thrust XCALR-2000A-1 "rotojet" rocket motor supplied by Aerojet that used monoethyl aniline and red fuming nitric acid; because of the corrosive and toxic nature of the liquids, the XP-79 was built using a welded magnesium alloy monocoque structure (to protect the pilot if the aircraft was damaged in combat) with a ⅛ in (3 mm) skin thickness at the trailing edge and a ¾ in (19 mm) thickness at the leading edge. However, the rocket motor configuration using canted rockets to drive the turbopumps was unsatisfactory and the aircraft was subsequently fitted with two Westinghouse 19-B (J30) turbojets instead. This led to changing the designation to XP-79B. After the failure of the rocket motor, further development of the first two prototypes ended.
Phthalate parent compounds and/or their metabolites have recently been implicated as a cause of breast cancer (BC). A 2010 study published in Environmental Health Perspectives for the first time implicated that the exposure to diethyl phthalates (DEP), a parent compound of the monoethyl phthalate (MEP) metabolite, may be associated with increased risk of BC (Odds Ratio of 2.20, p value for trend, p<0.003). The case-control study was age matched to 233 BC cases residing in northern Mexico. The phthalate level was determined in urine samples collected pretreatment from the cases. This is only a preliminary finding therefore additional research is required. It is interesting to note that exposure to the parent phthalate, butylbenzyl phthalate (BBzP) of the monobenzyl phthalate (MBzP) metabolite showed a negative association with breast cancer (Odds ratio=0.46, p value for trend, p<.008). This finding may be associated with the demethylation of the estrogen receptor complex in breast cancer cells of this particular phthalate resulting in a negative effect. This explanation will require further confirmatory research since confounders may be playing an unknown role. It is also known that DEP is found in a high proportion of personal care products, deodorants, and perfumes, whereas, in contrast, BBzP is not detected in most deodorants and hair products and in less than one-third of all products tested, so degree of exposure may also be influencing results. A higher phthalate tertile (microgram/g creatinine) of DEP/MEP was compared to a lower phthalate tertile of BBzP/MBzP in this study. In most cases of breast cancer, the cause is unknown, and less than 25% of patients have a history of commonly associated risk factors. such as: early menarche, later age at first childbirth, nulliparity, family history of BC, or history of benign breast biopsy