Synonyms for nfkbia or Related words with nfkbia

cflar              nfkbie              cebpd              gzma              pdgfc              nfkbib              ptprc              pdgfb              plaur              gzmk              ywhab              prkaca              nfic              hspca              nfkbiz              inhba              agtrap              nktr              narfl              lpxn              myrip              mdfic              ptprj              tyms              farsla              cebpb              ptprg              rybp              tagln              ptprd              ywhae              cpvl              procr              ctsz              mylk              hrasls              prkci              ptpro              prkacb              nucks              hnrnpc              hpgd              hbegf              hnrnpr              arhgdib              tufm              papola              tiparp              heph              hhip             



Examples of "nfkbia"
NFKB1; NFKB2; NFKBIA; NFKBIB; NFKBIE; NFKBIL1; NFKBIL2; NOTCH1;
C22orf25 has been shown to interact with NFKB1, RELA, RELB, BTRC, RPS27A, BCL3, MAP3K8, NFKBIA, SIN3A, SUMO1, Tat.
NFKB1 or NFKB2 is bound to REL, RELA, or RELB to form the NF-κB transcription factor complex. The NF-κB complex is inhibited by I-kappa-B proteins (NFKBIA or NFKBIB), which inactivate NF-kappa-B by trapping it in the cytoplasm. Phosphorylation of serine residues on the I-kappa-B proteins by kinases (IKBKA, or IKBKB) marks them for destruction via the ubiquitination pathway, thereby allowing activation of the NF-kappa-B complex. Activated NF-κB complex translocates into the nucleus and binds DNA at kappa-B-binding motifs such as 5-prime GGGRNNYYCC 3-prime or 5-prime HGGARNYYCC 3-prime (where H is A, C, or T; R is an A or G purine; and Y is a C or T pyrimidine). For some genes, activation requires NF-κB interaction with other transcription factors, such as STAT (see STAT6), AP-1 (JUN), and NFAT (see NFATC1).
NFKB1 (MIM 164011) or NFKB2 (MIM 164012) is bound to REL (MIM 164910), RELA (MIM 164014), or RELB (MIM 604758) to form the NFKB complex. The NFKB complex is inhibited by I-kappa-B proteins (NFKBIA, MIM 164008, or NFKBIB), which inactivate NF-kappa-B by trapping it in the cytoplasm. Phosphorylation of serine residues on the I-kappa-B proteins by kinases (IKBKA, MIM 600664 or IKBKB, MIM 603258) marks them for destruction via the ubiquitination pathway, thereby allowing activation of the NF-kappa-B complex. Activated NFKB complex translocates into the nucleus and binds DNA at kappa-B-binding motifs such as 5-prime GGGRNNYYCC 3-prime or 5-prime HGGARNYYCC 3-prime (where H is A, C, or T; R is an A or G purine; and Y is a C or T pyrimidine).[supplied by OMIM]
Ubiquitin-like molecules (UBLs), such as SUMO1, are structurally related to ubiquitin and can be ligated to target proteins in a similar manner as ubiquitin. However, covalent attachment of UBLs does not result in degradation of the modified proteins. SUMO1 modification is implicated in the targeting of RANGAP1 to the nuclear pore complex, as well as in stabilization of I-kappa-B-alpha (NFKBIA; MIM 164008) from degradation by the 26S proteasome. Like ubiquitin, UBLs are synthesized as precursor proteins, with 1 or more amino acids following the C-terminal glycine-glycine residues of the mature UBL protein. Thus, the tail sequences of the UBL precursors need to be removed by UBL-specific proteases, such as SENP6, prior to their conjugation to target proteins