Synonyms for pdif or Related words with pdif

NotFoundError             



Examples of "pdif"
Further upgrades were available with S/PDIF connectivity. There were not many S/PDIF boards made, however, and they are currently extremely rare.
With one exception, S/PDIF protocol is identical to AES3. The channel status bit differs in S/PDIF. There is one channel status bit in each subframe, making 384 bits in each audio block. The meaning of the channel status bits is completely different between AES3 and S/PDIF. For S/PDIF, the 192-bit block for each channel is divided into 12 words of 16 bits each. The first 6 bits of the first word are a control code. The meaning of its bits are shown in the accompanying table.
S/PDIF is a data link layer protocol as well a set of specifications for carrying digital audio signals between devices and components over either optical or electrical cable. The name stands for Sony/Philips Digital Interconnect Format but is also known as Sony/Philips Digital Interface. Sony and Philips were the primary designers of S/PDIF. S/PDIF is standardized in IEC 60958 as IEC 60958 type II (IEC 958 before 1998).
Digital (S/PDIF) audio may also be output by the console via its TOSLINK connector which outputs 5.1 channel sound.
S/PDIF (Sony/Philips Digital Interconnect Format) is a type of digital audio interconnect used in consumer audio equipment to output audio over reasonably short distances. The signal is transmitted over either a coaxial cable with RCA connectors or a fibre optic cable with TOSLINK connectors. S/PDIF interconnects components in home theatres and other digital high-fidelity systems.
S/PDIF is based on the AES3 interconnect standard. S/PDIF can carry two channels of uncompressed PCM audio or compressed 5.1/7.1 surround sound (such as DTS audio codec); it cannot support lossless formats (other than 2ch LPCM) such as Dolby TrueHD and DTS-HD Master Audio, that require greater bandwidth like that available with HDMI or DisplayPort.
S/PDIF is meant to be used for transmitting 20-bit audio data streams plus other related information. To transmit sources with less than 20 bits of sample accuracy, the superfluous bits will be set to zero. S/PDIF can also transport 24-bit samples by way of four extra bits; however, not all equipment supports this, and these extra bits may be ignored.
IEC 61937-3: defines how to transmit Dolby Digital (AC-3) and Dolby Digital Plus (E-AC-3) bitstreams via an IEC 60958/61937 (S/PDIF) interface. However, the S/PDIF interface has insufficient bandwidth to transport Dolby Digital Plus (E-AC-3) bitstreams at the 3.0Mbit/s datarate specified by HD DVD; lower datarates are possible.
Most receivers and players support S/PDIF. This lower bandwidth digital connection is not capable of transmitting lossless PCM audio with more than two channels, but a player can transmit a S/PDIF compatible audio stream to the receiver in one of the following ways:
The precursor of the IEC 60958 Type II specification was the Sony/Philips Digital Interface, or S/PDIF. S/PDIF and AES3 are similar in many ways and are interchangeable at the protocol level, but at the physical level they specify different electrical signaling levels and impedances, which may be significant in some applications.
fit-PC2i adds a second Gbit Ethernet port, Wake-on-LAN, S/PDIF output and RS232 port, has two fewer USB ports, and no IR.
AES3 has been incorporated into the International Electrotechnical Commission's standard IEC 60958, and is available in a consumer-grade variant known as S/PDIF.
A digital audio signal being sent through wire can use several formats including optical (ADAT, TDIF), coaxial (S/PDIF), XLR (AES/EBU), and Ethernet.
Even digital AV standards often were point-to-point and one-way such as S/PDIF for audio and the serial digital interface (SDI) for video.
Signals transmitted over consumer-grade TOSLINK connections are identical in content to those transmitted over coaxial connectors, though TOSLINK S/PDIF commonly exhibits higher jitter.
In addition to analog, audio analyzers today are frequently capable of generating and measuring audio signals over several different types of digital I/O. For example, the Rohde and Schwarz UPP offers AES/EBU, S/PDIF, I²S and HDMI options; the Audio Precision APx500 Series analyzers support AES/EBU, S/PDIF, I²S, HDMI, PDM (Pulse Density Modulation), and Bluetooth radio, and are fully DSP based.
Lightpipe uses the same connection hardware as S/PDIF: fiber optic cables (hence its name) to carry data, with Toslink connectors and optical transceivers at either end. However, the data streams of the two protocols are totally incompatible. S/PDIF is mostly used for transferring stereo or multi-channel surround sound audio, whereas the ADAT optical interface supports up to 8 channels at 48 kHz, 24 bit. Recently, Lightpipe devices have been successfully interfaced via FireWire.
Dolby Digital Plus bitstreams are not directly backward compatible with legacy Dolby Digital decoders. However, Dolby Digital Plus is a functional superset of Dolby Digital, and decoders include a mandatory component that directly converts (without decoding and re-encoding) the Dolby Digital Plus bitstream to a Dolby Digital bitstream (operating at 640kbit/s) for carriage via legacy S/PDIF connections (including S/PDIF over HDMI) to external decoders (e.g. AVRs, etc.). All Dolby Digital Plus decoders can decode Dolby Digital bitstreams.
All DCC-recorders used the SCMS copy protection system which uses two bits in the S/PDIF digital audio stream and on tape to differentiate between "protected" vs. "unprotected" audio, and between "original" vs. "copy":
All MiniDisc-recorders used the SCMS copy protection system which uses two bits in the S/PDIF digital audio stream and on disc to differentiate between "protected" vs. "unprotected" audio, and between "original" vs. "copy":